

TRANSFORMATIVE RENDERING OF INTERNET RESOURCES

OCTOBER 2012

INTERIM TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2012-258

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-258 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

JAMES PERRETTA WARREN H. DEBANY, JR., Technical Advisor
Chief, Cyber Assurance Branch Information Exploitation & Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2012
2. REPORT TYPE

INTERIM TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2009 – SEP 2012
4. TITLE AND SUBTITLE

TRANSFORMATIVE RENDERING OF INTERNET RESOURCES

5a. CONTRACT NUMBER
IN HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Frank H. Born

5d. PROJECT NUMBER
GAIH

5e. TASK NUMBER
CY

5f. WORK UNIT NUMBER
BR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2012-258
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-5089
Date Cleared: 24 Sept 2012

13. SUPPLEMENTARY NOTES

14. ABSTRACT
There needs to be a reliable way to protect the client browser from any malicious code that is hosted on many
websites. The technology chronicled in this report is called “Remote Web Rendering”. It takes the approach to
remotely render the Web page such that it can be completely re-written before it gets to the browser. The re-
written code will only pass on known good code to the browser. Remote Web Rendering is a simple but
profound concept that is capable of completely insulating users from both known and unknown web based
threats. The power of Remote Web Rendering is that it does not rely on code analysis methods to detect
malicious code. It implements protection against all incoming code regardless of whether signature analysis
methods can detect if it is malicious.
15. SUBJECT TERMS
Browser, Malware, Web Application, Filter, Signature Analysis, Remote Rendering

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

U

18. NUMBER
OF PAGES

 31

19a. NAME OF RESPONSIBLE PERSON
E. PAUL RATAZZI

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

Table of Contents

Introduction ... 2

Related Work ... 3

Benefits .. 4

Malware removal .. 4

Securing WiFi Connections .. 4

Disrupt Machine Fingerprinting .. 5

Break Steganographic Techniques .. 5

Covert Channel Disruption .. 5

Disrupting Exfiltration ... 5

Reverse Malware Blocking .. 5

Page Re-Writing Toolbox ... 6

Use Cases ... 8

Battle zone buffering ... 8

Critical computer buffering ... 8

Casual surfing .. 8

Home user safeguard .. 9

Cross Domain Browsing ... 9

Challenges ... 9

AJAX ... 9

JavaScript ... 10

Web 2.0 and beyond ... 10

Internet plug-ins and Flash .. 10

Selectable Content .. 10

Design Details .. 11

Document Object Model (DOM) as the Transformation Template .. 11

Image Maps as a Page Platform .. 13

Background Image Management .. 13

Separating Top Level Pages from Sub Pages ... 14

ii

Server Security ... 14

RWR Demonstration Vehicle ... 16

Privacy, OPSEC, Industrial Espionage Security .. 21

Results ... 22

Conclusions .. 23

Biography ... 25

References ... 25

Approved for Public Release; Distribution Unlimited.
1

Executive Summary

 Malicious code is surreptitiously attached by hackers to many legitimate sites
with the sole purpose to silently infect the computer that accesses the infected page.
Even security vendor’s web sites have fallen victim to these attacksi and, in turn,
attacked the visitors to their siteii. Many other security vendor sites have been shown to
be vulnerable alsoiii,iv,v. Given that we have no control over the content of the pages
that we visit how can we protect ourselves from the ever present threat? Malware
signature based protection schemes will only protect us from a subset of the known
(non-mutated) threats. Real time code analysis could detect some new threats but it is
no match for the obfuscation techniques employed in most attacks. What we need is a
solution that can protect us from known or unknown (or mutated) threats without
having to first identify the threat.

 Given that malware will be hosted on many legitimate pages for many years to
come there needs to be a reliable way to protect the client browser from any malicious
code that they have accessed. Disrupting malware that is resident on a Web page can be
done in several ways. The predominant way is to filter the incoming page by looking for
signatures of known malware. The problem with this technique is that it is dependent
on signature analysis that is ineffective against new attacks or obfuscated attacks. A
technology chronicled in this report is called “Remote Web Rendering”. It takes the
approach to remotely render the Web page such that it can be completely re-written
before it gets to the browser. The re-written code will only pass on known good code to
the browser. Remote Web Rendering is a simple but profound concept that is capable of
completely insulating users from both known and unknown web based threats. The
power of Remote Web Rendering is that it does not rely on code analysis methods to
detect malicious code. It implements protection against all incoming code regardless of
what up to date signature analysis methods might say about its safety.

 Remote Web Rendering also has a side benefit. Since the page is rendered
remotely there is no possibility for the web site to determine what particular client
accessed their page (unless they are required to login). For clients who are concerned
about industrial espionage, or, from a government viewpoint, Operations Security
(OPSEC), this non-attribution greatly increases the privacy of their searches and page
access.

Approved for Public Release; Distribution Unlimited.

2

Introduction

The Web carries a vast amount of malicious code and is the platform from which
the majority of attacks against personal computers are launched. Viruses, Trojan horses
and other malicious code accompany millions of web pages. Of these infected pages
approximately 90% are legitimate pages that have been hackedvi. Only 10% of the
infected pages were purposely bult to host malware. The Web browser provides an
avenue for direct compromise of the user’s machine. In many cases all it takes is for the
user to navigate to an infected web site and the exploit will automatically launch and try
to infect their machine.

Personal computers that are infected through web based malware are often
under the control of attackers who can use them for personal gain, economic or even
military purposes. The technique presented here could be useful for protecting
government as well as private sector computers. It presents a low cost method for users
to protect themselves from being infected and possibly unwittingly becoming an agent
of the enemy. For home use it is possible that the cost of this technology could be
funded entirely through alternate means such as advertisement revenue.

 Remote Web Rendering is a simple but powerful concept. By remotely rendering
the web page, and passing on a re-written page in an innocuous form, you can insulate
the client web browser from all malicious code on the original web page. The rendering
server keeps the original code away from the client browser. Since the rendering server
does not pass on any original code there is no need for analysis to determine what code
may be harmful and what is benign. It is important to understand the method by which
content is identified by the rendering server. The rendering server will render the web
page using either the Firefox or Google Chrome rendering engine. The rendering server
then captures a screen shot of the page and creates code that positions elements of the
web page over the top of the screenshot. Content that is interactive or arrives at a later
time will be displayed to the user in an alternate form that cannot infect their computer.

 For the client, Remote Web Rendering will require no specialized hardware nor
will it require any software installation. In some cases the user may have to set some
configuration items in their browser such as setting up a proxy connection or lock down
a few security settings. Since this technology is lightweight it should be useful for the
un-patched masses (the common folk who do not keep their software patches up to
date). In addition it could also be useful for the highly managed enterprise where the
technology would be another layer in their defense systems.

 The technology underpinning this technique is the subject of a patent application
entitled “Transformative Rendering of Internet Resources”vii. This technology is available

Approved for Public Release; Distribution Unlimited.

3

for licensing through the US Air Force by referencing patent pending application serial
number 12/802,458, filed May 13, 2010.

Related Work

Other researchers have started from the same conclusion that the client can only
be truly safe from internet based malware if their web content is rendered remotely.
Where the research diverges is about how to send the client a safe version of the
remotely rendered web resource.

- One approach for presenting a safe version of the page is through the use of
a thin client approach. The Cross Fabric Internet Browsing System (CFIBS)
was developed by Air Force Research Laboratory Sensors Directorate
(AFRL/RY). CFIBS uses thin client hardware and a KVM switch (Keyboard,
Visual, Mouse) to provide a separate secure channel for the client to browse
the internet securelyviii.

o Comparison to our approach: While CFIBS technology completely
protects the client machine from compromise due to online malware
it is not meant for large scale use since it requires dedicated
hardware for each client. Our technology (Remote Web Rendering)
described here does not require hardware or software to be installed
for the client thus it could be used by the masses both within and
external to large enterprises.

- Browser Shield uses “vulnerability driven filtering” and dynamic exploit
removal to accomplish page sanitization for security purposes. It utilized
interposition techniques in the browser to rewrite web based scripts into
safe formsix.

o Comparison to our approach: This technique relies on an
understanding of known vulnerability types and wrapping of
JavaScript. Remote Web Rendering does not rely on any knowledge of
vulnerability types since this knowledge is always changing. In
addition, the wrapping of JavaScript code is in a way similar to
sandboxing but that sandbox is likely to be something that a clever
programmer could escape from.

- Web Shield employs the same method of using a “middle box” to render the
web pages and passes no untrusted JavaScript on to the client. Rather it runs
the JavaScript code at the middle box and runs a JavaScript rendering agent
at the client. The html is transferred to the client by transferring the encoded
DOM of the web pagex.

o Comparison to our approach: Differences between Web Shield and
Remote Web Rendering revolve around the way in which the safe

Approved for Public Release; Distribution Unlimited.

4

code is transferred to the client. While RWR presents screenshots
overlaid with HTML elements, Web Shield will send pure HTML code
to the client whenever the DOM on the remote machine changes.
While this technique should be more responsive than the screenshot
method it will suffer on many pages due to the frequent changes that
the DOM goes through.

Benefits

Many web sites are created just for the purpose of hosting malware. These
largely consist of pornographic sites, gambling sites, or sites that capitalize on celebrity
news or other hot search topics. Users are often educated to stay away from this type of
site because of the likelihood that they could contain malware. The more insidious
threat comes from legitimate web sites that have themselves been hacked. There is no
way of anticipating which of these sites have been hacked and therefore pose a security
threat to visitors. The purpose of most of this web page hacking is to plant malicious
code on the web site that will attack any computer that accesses that web page. News
sites, on-line stores, government sites even computer security sites have all played
innocent host to the malicious code.

Consider how a targeted attack could be launched through the Web. By planting
malware on an intranet site a whole enterprise could be targeted. Similarly, malware
planted on a DOD contractor’s site would end up targeting the likely customers of that
site - namely DOD agencies and their contractors.

 In addition to web based malware there are other threats out there that this
technique will foil. For example consider the following benefits for the remote Web
rendering technology:

Malware removal
The main objective of the remote Web rendering technique is to
ensure that no malicious code is transferred to the browser. Since
the rendering server only passes on benign content to the client
they are protected from all malware variants whether known
previously, mutated or entirely new (zero day).

Securing WiFi Connections
Any unencrypted wireless connection is subject to listening by
others “within range” of the signal. (Note that with even
rudimentary antennas WiFi signals can be accessed from far
away). Unencrypted Web applications that the user is accessing
can easily be “sidejacked” while they remain open. Remote Web

Approved for Public Release; Distribution Unlimited.

5

Rendering can provide an SSL connection that encrypts traffic
passing through a public wireless system. Sidejacking with an
application such as Firesheep will no longer be an issue.

Disrupt Machine Fingerprinting
Fingerprinting of a computer has been gaining attention recently.
It goes far beyond cookie based tagging. It allows web pages or
advertizing inserts to identify a user based on the parameters of
their machine and browser such as the fonts that are installed,
the versions of plugins, and operating system and browser
parameters. This can be done even if the user is security
conscious and does not allow persistent cookies to be placed on
his machine. Remote Web Rendering will break this fingerprinting
process. Instead the tracker will only see parameters that apply to
the rendering server. None of the client machine parameters will
be accessible to the web site owner.

Break Steganographic Techniques
Capturing an image of an image breaks many (but not all)
steganographic techniques. Capturing an image of a formatted
text file can also break some text based covert channels.

Covert Channel Disruption
Since HTML disregards multiple whitespaces and treats them as a
single whitespace it is possible to use this and other flexibility in
HTML to encode data that is being passed to the client system.
While this capability is a side benefit of the Remote Rendering
technology it will probably only be useful in limited cases. For
example, in a prison or detention center access to the internet
might allow coded messages to be passed to the inmates.

Disrupting Exfiltration
Just as covert channels can be used to send data to a client they
also can be used to exfiltrate data from the client system or web
server. By running the remote web rendering system in a reverse
proxy mode (re-writing the pages as they leave the server) it will
break many of the covert channels that could be used to exfiltrate
data off of the system.

Reverse Malware Blocking
In a situation where Malware is planted on an intranet site the
target of the malware will be the employees of that company. If a
military web site was hacked then the primary targets of the
malware would be government employees and their contractors.
Using Remote Web Rendering techniques to re-write the pages as
they leave the server we will protect the clients for those pages.

Approved for Public Release; Distribution Unlimited.

6

There are lots of ways for the attacker to plant the malicious code
on the site but there is only one way for the infected site to attack
the client – that being direct download of the page and display in
a browser.

Page Re-Writing Toolbox
 The Web browser provides one of the most flexible platforms for software
development. There are many ways to accomplish the same task. We have already
mentioned some of the tools that we are using in re-writing web pages. Below is a list of
the useful tools for this effort:

Tool What it is How we use it

Image Maps HTML format that
overlays items on top
of an image

This is the basis for our re-written web
pages. Content items will be overlaid
on the background image.

DOM Document Object
Model - The
representation of the
structure and
elements of the page.

The DOM catalogs the existence and
location of the elements that are to be
overlaid on the image map.

Layers Web pages can utilize
multiple visible or
invisible layers.

We can use these layers to hold items
such as dropdown menu choices,
mouse-over images, form processing
actions etc. They can be pushed to
front or back using CSS/JavaScript
controls.

HTML 5 New Web standard
that contains
advanced capabilities
for content
presentation.

Capabilities resident in the new HTML
specification will allow conversion of
vulnerable formats such as Flash into
standard HTML.

AJAX Asynchronous
JavaScript and XML -
Provides the ability to
add content or

AJAX code is used to continually pass
data in both directions, from the client
to the Rendering Server (RS) and from
the RS to the client.

Approved for Public Release; Distribution Unlimited.

7

receive user input
without reloading a
page.

Caching Saved renderings of
recent pages

If the rendering server is used by
multiple people then the caching of
recent pages will make the browsing
experience much faster. It will also
decrease the footprint of an agency as
seen by search providers and others.

Code
Compression

Creating a smaller file
size version of the
original web page

The re-written page code is
significantly smaller than the original
page code. Overall the code is very
clean and concise in the new page and
the display time when it reaches the
client machine is fast.

Big Pipe The rendering server
will typically be
hosted on a much
faster connection
than that available to
the client.

The original page will arrive faster at
the server than it would at the client.
Since the re-written page will be
smaller than the original page it will
transfer to the client quicker than the
original page.

Deconstruction Separate vulnerable
file formats into
vulnerable and non-
vulnerable parts.

Another way to deal with Flash
elements (and similar) is to separate
the content into elements that can
safely be passed on or need to be re-
created. Deconstruction allows
dangerous elements to be
transformed to another format.

File Format
Converters

Convert one file
format to another

File types that can contain malicious
code can be converted to alternate file
types that present little danger to the
client. I.e. PDF documents are easily
converted to images.

Auto Refresh At a specified interval
the page and/or
screenshot can be

Auto Refresh can be used to push
updated versions of pages, or portions
of pages, at regular intervals.

Approved for Public Release; Distribution Unlimited.

8

automatically
refreshed

Click-Through Directly passing on
mouse actions to the
rendering server

In certain cases it may be necessary to
pass mouse actions to the rendering
server or directly to the original page
source. In turn the source will provide
response content through the
rendering server.

Use Cases

Remote Web Rendering is not envisioned to be a complete replacement for the
current client browsing experience. Certain aspects of the modern browsing experience
would be hard to totally duplicate with code that is automatically generated by the
rending server. While we do not envision this as a one size fits all solution, the utility of
this concept is quite compelling in many cases where security is important. Here are a
few examples:

Battle zone buffering
Soldiers on the battle zone obviously are key information targets
for the enemy. On the other hand, internet access has almost
become a human rights issue. This is a delicate balancing act to
allow free internet surfing without jeopardizing the mission.
Remote Web Rendering may be the technology that provides the
insulation from threats that is absolutely required in this
environment.

Critical computer buffering
Remote Web Rendering presents an additional safeguard for
highly critical computers. Signature analysis can only work against
known malware signatures. New (unknown) malware is what will
be used against critical targets. Signature analysis cannot detect
these attacks.

Casual surfing
Almost any computer that is used for business (or mission!)
should be considered a target for either economic crime,
espionage or trade secrets theft purposes. A single infected
enterprise computer can often become the segue by through
which an organization’s intellectual capital is stolen. Even if these
computers are only protected during off duty time it could still
result in a significant reduction in risk to the organization.

Approved for Public Release; Distribution Unlimited.

9

Home user safeguard
The un-patched masses are quite often the minions of the bot
masters of this world. These unwitting computers can be used
economically or militarily against our country at some critical
time. Protecting these home computers is a valid concern for the
government.

Cross Domain Browsing
Often when working on classified data there is a need to access
public documents on the Web. It is critical that those public
documents not carry any potentially dangerous code. Remote
Web rendering provides high assurance that all malicious code
has been purged from the re-written Web page or other internet
resource.

Challenges
AJAX

Internet browsing is rapidly changing. No longer are static web
pages the norm. AJAX code, which brings in content
“asynchronously” (without the page being refreshed), has made
the web page more like a traditional software application. AJAX
presents one of the biggest challenges to our concept of re-
writing of web pages from scratch. AJAX stands for Asynchronous
JavaScript and XML. The XML in its name is somewhat of a
misnomer, but JavaScript is an integral part of the AJAX
technology. New content can be delivered at any time after the
initial page loads based on the JavaScript commands that identify
when and where that content is to be delivered. Often the new
content is delivered upon some user initiated event. For example
in the Google Maps web page (I should call it an application) new
maps are delivered to the browser in response to the user using
the mouse to scroll the maps in any direction. Similarly, on this
and other AJAX enabled pages, new content will be delivered in
response to on-click, on-page-load, on-mouseover, on-keystroke
etc. This allows the page to constantly respond to the actions of
the user just as if the application entirely resided on the client
machine.
For the rendering server to duplicate this type of AJAX function
the rendering server will need to first identify the JavaScript
events that are contained in the web page. It will then need to
create controls on the new page that will pass on these events to
the rendering server, who, in turn, will pass the appropriate

Approved for Public Release; Distribution Unlimited.

10

data/event on to the document source. Once new content is
received at the rendering server it can be rendered or possibly
just passed on in purely HTML format for display in at a certain
location in the page.

JavaScript
Note that while we are not passing through original JavaScript to
the client browser the rendering server will be generating plenty
of its own JavaScript that will be sent to the client. Also it will not
be passing on original AJAX code to the client browser but will rely
heavily on its own AJAX for the interchange between the
rendering server and the client browser.

Web 2.0 and beyond
Web 2.0 is mostly due to advances on the server side rather than
in the client browser. User built sites rely on user input and
interaction. This involves a lot of user inputs being entered into a
database for others to view and or edit. When presented in the
browser this Web 2.0 content is displayed the same as any other
web page. Certainly these “2.0” sites utilize AJAX but not in any
different way than other sites. Cloud based functions, on the
other hand, are accessed through a web based application and
are usually highly AJAX dependent. Each click event typically calls
for more or different data from the cloud, as does each keystroke
or series of keystrokes. Interaction between the user and the
server is pretty much constant throughout the user’s session. To
keep this interaction seamless the server must reduce the size of
their transmissions to be as small as possible. Integration of these
functions into the recreated page will rely on capture of all user
actions and constant refresh of certain portions of the page.

Internet plug-ins and Flash
This content provides further complications to the web browser
function. Much of the content in Flash could possibly be replaced
with HTML 5 features. Whether or not the new HTML 5
specification will introduce vulnerabilities is yet to be determined.
Plug-ins present their own difficulties. They can still be installed in
the browser but they will be operating on a different set of page
data. RWR is not aimed at trying to protect the browser from
malicious code in any plug-in. Our only aim is to continue to
provide as much functionality of the original web page as
possible.

Selectable Content

Approved for Public Release; Distribution Unlimited.

11

Text in a web page can usually be copied and posted into another
document. In the initial version of our rendering server there is no
text to select. The client just sees an image of the text. The
challenge in a future version of the rendering server is to provide
an avenue for the user to be able to copy the original page text.
This could be done by providing selectable see through text over
the top of the image of the text.

Design Details

Document Object Model (DOM) as the Transformation Template
 The method by which we rewrite the web pages is through creating a
screenshot of the page and overlaying the screen shot with features of the page
as identified by the Document Object Model (DOM). Simply stated the DOM is a
convention for representing the structure and elements in a web page. The
JavaScript language in a web page gains many of its capabilities through
manipulating the DOM. Through JavaScript we can query the DOM and identify
all elements in the web page. In addition, their location on the page can be
determined so the elements can be placed over top of the screenshot image and
in most cases the user cannot tell that the page has been re-written.

Approved for Public Release; Distribution Unlimited.

12

Figure 1 Remote Web Rendering Overview

When rendering the page, the browser also creates the DOM that
enumerates elements of the web page. Data contained in the DOM is then used
to create the new code that is transferred to the client browser along with the
screenshot on which these elements are overlaid. This is an important point: we
use the browser’s understanding of the elements of the page (as enumerated in
the DOM) to create the new code. We are not trying to parse code and then re-
create it. If we were parsing code then we could be easily tricked by obfuscation
and other tricks of the trade of malware authors. On the contrary we are letting
the browser on the rendering server tell us what elements are on the page. If the
browser understands that something is a link then we will pass it on as a link.
The same is done for other elements that can be extracted from the DOM.

JavaScript that operates in the original web page often makes changes to
the DOM. These changes need to be captured by the rendering server and
passed on to the client in some form. Often this will change the location of the
links in the document. This can affect the re-written page depending on the
timing of those DOM changes, i.e. whether it is before or after the DOM has
been queried to find the placement of the links. The DOM structure differs from
one browser to another but that does not have an effect on our page re-writing
method since we are only working with the DOM on the rendering server and we
limit that browser to a set type and configuration.

Approved for Public Release; Distribution Unlimited.

13

Image Maps as a Page Platform
 Early efforts in this research pointed to the possibility of using image
maps as the platform for re-writing the web pages but, until the details were
worked out, it was uncertain if this was the best course of action. Since this time
much work has been done using the image map concept and it is clear that this
format works well for re-writing most web pages. The implementation of image
map based pages is simple – take a screenshot of the original web page and use
that snapshot as a background on which to place links and other page features.
The process gets considerably more complicated when you start accounting for
flash, JavaScript, AJAX, cookies etc.

 For those who are not familiar with image maps they are a standard but
somewhat passé Web page format. They allow links and other features to be
overlaid over an image by defining hotspots within the image for that link or
feature. Since image maps are somewhat ignored in recent years there is little
information on the web about their capabilities and how they differ from
standard html formats. For instance in the image maps it is customary to define
a hotspot in the image using the “area” tag. One difference with this is that the
area tag does not support most standard Cascading Style Sheet (CSS) elements.
Thus adding a simple hover effect for the area hotspots requires significantly
more code.

 Even with the differences between image maps and standard html
formats we have found that images maps do support the types of content that
we need to add when re-writing the web pages. Image maps can support
overlays of links, forms, video, layers and html content. They support AJAX data
push and pull, and can include JavaScript code just like any other web format.
One element that image maps do not support is the dynamic elements that grow
and shrink the web page as they are opened and closed. Should these elements
be required the rendering server would have to show the element in some other
way such as an additional layer that can be closed on command or after a certain
time.

Background Image Management

Currently two screenshots are used in the initial rendering of a page. The
first screenshot shows just the visible portion of the page as initially seem in the
browser window. This is followed a few seconds later by a screenshot of the
entire page. Using the two screenshots instead of one allowed a preliminary

Approved for Public Release; Distribution Unlimited.

14

page to be displayed to the client while the server was given more time to load
the entire page and generate a complete screenshot.

 An adaptation of this technique would be to screenshot each major
portion of the DOM separately. In a way, this would be a little like a thin client
solution, where updates were constantly being supplied to the client as each
portion of the page changed. It would be an optimization problem to determine
at what level in the DOM hierarchy to individually render DOM elements and
how often to render those elements. This should be evaluated at a later time.

- Screenshots would be supplied that only showed content in a
particular DOM portion. Code for the elements in that DOM portion
would have to be supplied with element positioning that is relative to
the position of the container rather than being positioned absolutely
from the top corner on the screen as it is in the current prototype
code.

Separating Top Level Pages from Sub Pages

 Determining what internal pages to render and what not to render is not
straightforward. More complicated web pages often contain multiple sub pages
mostly using internal frames (iframes). One news site we evaluated had three
sub pages contained within it and one of those sub pages was duplicated eight
separate times – resulting in a total of 11 sub pages on one page. The user
scripts, through which we accomplish the rewriting, when injected into the
incoming pages cannot always identify their parent. Also, the page that the client
requests is often not the page that the client gets due to redirects at the page
provider. Only top level pages should be logged in the rendering server database
and all sub pages will be included as part of that top level page.

Server Security

Security of the server used for remote rendering is a significant concern.
Should a VM on that machine get compromised, or worse yet, the whole
machine get compromised, the attacker could have a direct channel to feed
malware to one or more clients. The remote rendering methods described
herein will have to be proven to be able to address the threats against the
rendering box and its software.

Approved for Public Release; Distribution Unlimited.

15

 In some cases the attacker could be a user (client) of the rendering
server. In this capacity they could direct the rendering server to retrieve and
render web resources that have been specially crafted to attack the rendering
server. This method is similar to what is done at the pwn2own competitions held
at CanSecWest. In these competitions hackers were to compromise a fully
patched browser or operating system/browser combo. To do so the hackers
would typically direct the machine to be compromised at web pages the hackers
had built for that hacking competition to exploit that particular OS/browser
configuration.

During demonstrations of the remote rendering concept several people
observed that we are transferring the risk involved in this process from the client
machine to the rendering machine. So, they asked, how does this make us safer?
There are several reasons why the rendering server is not just transference of
risk with no benefit. They include:

- The rendering server is hosted on a Linux-based operating system
(OS). The OS is much more secure than the typical client operating
system and will inherently block malicious code. In the pwn2own
competitions mentioned above, the Ubuntu Linux operating system
was never compromised.

- Each rendering server will provide service for many. This will make
patching for client systems less critical while the patching on the
rendering server remains critical but can be accomplished easier.

- While Remote Rendering technology does not rely on filters to
protect the client from malicious code, it can use the filtering
technology for its own protection. It works to the server’s advantage
to remove known malware from the incoming web page data before
it renders the original code. Much of this filtering technology is heavy
weight and not appropriate for the installation on multiple client
machines. Thus the code that is incoming into the rendering machine
is first checked for malicious code before it is rendered. The offending
code can then be removed from the file before rendering the page. If
the situation warrants the page could also be rejected and a message
sent to the client about the presence of malware.

- Virtualization of the rendering server provides a clean slate OS for
each browsing session. Should the server OS get infected (doubtful)
or a rogue document get uploaded to server file system the system
can automatically refresh (and purge the system compromise) at set
intervals or for each new client session.

- It is possible that the Remote Rendering server could be hosted in the
cloud. In the most secure example of this the user could start up a

Approved for Public Release; Distribution Unlimited.

16

new instantiation of the rendering server when they want to access
the Web. The server cloud instantiation can then be closed.

In addition to the possibility of being located in the cloud, the rendering
server is a good fit for organization gateways, proxy servers and, if we can solve
a couple issues, it could be hosted directly on the Web as a portal from which
users can surf securely.

Figure 2 Remote Web Rendering Data Flow

RWR Demonstration Vehicle

Re-writing Web Pages: For demonstration purposes we are using a full up
Firefox installation running in Ubuntu with Apache/PHP/MySQL (referred to as the
“rendering server”). The client requires no special hardware configuration nor even any
additional software installed. The client accesses the remote rendering capability
through a normal browser. (Google Chrome is the preferred browser for demonstration
purposes but there is no reason why this could not work with other browsers).

Accessing the Remote Web Rendering capability can be done by going to the URL
for the rendering server. The rendering page then presents the client with a browser in
a browser concept. Figure 3 shows a re-written version of the AFRL homepage page.

Approved for Public Release; Distribution Unlimited.

17

Browser level controls such as the address bar, forward and back buttons, history and
favorites are all presented via the browser controls presented in the top bar of the page.
All interactions between the client and the rendering server can be protected via a
secure connection thus making the rendering server a secure way to access the internet
from an insecure location.

Figure 3 Non-Proxy RWR Prototype

 On the rendering server we inject code (called the rendering script) into the

incoming page. This injected script is referred to as a “User Script”. Since our
demonstration vehicle has a full up Firefox installation we use the Greasemonkey add-
on for injecting the script. In Google Chrome browser there is an add-on called Tamper
Monkey for running user scripts. The injected code does the following five functions
(which will be discussed in more detail in another section):

1. Determine which is the top level page and which are the sub pages (iframes
etc). While the rendering script is injected into each of the pages (sub pages

Approved for Public Release; Distribution Unlimited.

18

and top level page) we do not want to confuse the two and show to the
client an in-page advertisement as a separate page.

2. Extract information from the DOM concerning the elements of the page.
Individual parameters from the DOM elements are extracted and these
elements are reassembled in a template of new html code that will be passed
on to the client. Of special importance is the fact that we are not looking for
whole HTML tags but rather we retrieve the parameters that define a specific
HTML tag. Thus, when the rendering server decides that an element is a link,
the inserted script will query the DOM and tell us what the URL for that link
is, along with all the other parameters that apply to that link. These
parameters can then be escaped so that they can be used only for their
intended purpose.

3. Repackage the parameters into a new HTML element. The code will then
determine the pixel location of the element so that it can be overlaid over a
screenshot thus creating an image map of the page.

4. Call a file, “pagesaver.php” that will take the screenshot of the page.
5. Send data to another file, “newfile.php”, that will write the rewritten code

for the page to the MySQL database.
6. Watch for new requests from the client using an embedded iframe called

“server_receive.php”.

At the client end we run code to send new page requests to the server and to
receive new pages from the server. All these send and receive functions are
accomplished via JavaScript/AJAX so the page that the client is on never actually
changes, even though the images that they are viewing, and the underlying code for
interacting with that page, are constantly changing.

For RWR users not accessing the rendering server as a proxy the client interface
is constructed using a frames based HTML page. Here is an overview of the files that are
involved:

1. The “Browse” frame displays the browser in a browser controls including
address bar, back and forward buttons, a form for tagging and saving
favorites, logout, refresh and home buttons. The browser functions are
duplicated is to keep the user from accessing the real browser’s controls
that, in the absence of a web proxy, will cause users to bypass the web
rendering server and go direct to unprotected pages.

2. The “Display” frame contains the code for displaying the recreated page to
the client. Several pages are used to accomplish this function:

a. An embedded iframe, “client_receive.php”, is used to continually
check for updated content from the rendering server and pass that
input on to the display page.

Approved for Public Release; Distribution Unlimited.

19

b. Another embedded iframe, “requests.php”, is used to process and
record requests that result from clicking on links, submitting forms or
accessing the new browser control buttons. These client requests are
written to the rendering server database where they are “found” by
the rendering engine.

c. The top level page, “template.php”, receives the page changes (and
new page loads) from client receive. It then processes the inputs and
displays to the user the changes to the screenshot and overlays
functional links and forms on the screenshot.

Complications arise in duplicating some standard behaviors of the browser. For
example the ability to remember the scroll position of the browser window is very
helpful when navigating via the back button. Other examples of items that have been, or
need to be, addressed in the rendering server code include:

1. Back button, forward button functionality. When the rendering server
accesses a page it writes new code to the database. The back button (or
history function) works by retrieving a previous record from the data base.
When a link is followed from a previous page a new record is written to the
database and the client is forwarded to it. This page is then given a new
(sequential) ID. At this point the use of the back button should not take the
user to the previous page as identified by the sequential ID number. It should
take the user to the page that they were previously accessing.

2. Remembering Vertical Scroll state. When hitting the back button the browser
should load the previous page and advance the scroll to the point where the
user was when they left the page.

3. Anchor tags identify locations in a page where the user could be advanced
directly to that vertical scroll position. The anchor is identified in the URL as a
“hash tag” that follows a pound symbol. When a URL with a hash tag is called
from another page the rendering server will have to render the entire page
and write it to the database for the client to retrieve. The client when
retrieving it must also identify the scroll position of the anchor tag that the
client should be advanced to. Complications arise when the link with the
hash tag is accessed that refers to a spot within the existing document. In this
case there is no new page for the server to load, just a new location for the
client to scroll to.

4. Identifying web pages vs. other file types (ie PDF, Word Docs etc) is not
straight forward. Parsing the URL will often not give the right answer. Since
each document type should be treated according to a tailored rule set it is
important that we be able to distinguish between file types. IE PHP, ASP etc
and other web files are often used to create image files, PDFs Word docs etc
just by changing the content type in the code.

Approved for Public Release; Distribution Unlimited.

20

5. Dead URLs cause problems with the current instantiation of the rendering
server. This is because the rendering script does not load in the locally
generated “file not found” page. Since the script did not load then there is no
script watching for new requests from the client nor is there a way to send
on the failed result to the client. It would be helpful to modify on the server
the local browser pages that warn the user of this type of situation to include
the rendering script. While this is possible to change the local browser pages,
it is not easy nor is it documented well.

6. We have implemented a couple different techniques for determining ahead
of time when a URL represents a dead link. The first way that we did this was
to retrieve a small portion of the page code to determine if there was
anything there. In an effort to speed this up we instead used the CURL
extension on the rendering server to test each URL. While this is a more
efficient solution the CURL request is often treated as unwanted automation
by the host server and sent home with an improper http status code for the
page.

7. Since a new page is “loaded” by changing the content on the page it is
necessary to also implement a control to automatically scroll back to the top
of the page when the page is loaded.

8. Back button functionality in the frame based browser bar is tricky and
sometimes inconsistent. Calling functions from other frames is sometimes
allowed and sometimes not. For example, the back button that is held in the
Browse frame does not always launch the back function that is resident in
the Display frame. Different browsers treat this cross frame function call
differently. For this reason there is also a right-click menu in the Display
frame that will allow a user to call the back and forward functions from
within that frame.

9. Newer browsers are now starting to understand the AJAX powered site
paradigm. As such, the browser back button often realizes that a new page
has been displayed to the user even though the page URL has not changed.
Thus the browser back and forward buttons that are supported with the
client browser will correctly move the page to a different data set just as the
internal functions in the remote web rendering code.

10. Image Caching was a problem until we started making the image name
unique by inserting the current time. In cases where the page already might
have already been in client memory this causes unnecessary delay but in
most other cases the unique name is necessary and beneficial.

Screenshots are accomplished via a plugin that that can capture the current

visible portion, the entire page or any defined section such as that contained in a

Approved for Public Release; Distribution Unlimited.

21

particular <div> tag. Reconstructed HTML code that is created by this process is then
written to a MySQL database and grabbed by the client from there.

Re-writing other Web Resources Web pages are certainly not the only internet

resources that can contain or transmit malware or covert messages. For several years
PDF documents were constantly being identified as a malware attack vector due to
vulnerabilities in their construction. Image formats also can be used in ways not
apparent to the eye. Re-writing these documents for read access is very simple.
Recreating these documents in a form that will allow copying text and editing is more
complicated.

Document conversion software called ImageMagick can be used to convert
multiple files types into alternate types. Conversion in itself should break most if not all
malware. IE the malware written into a pdf file will not still be executable if converted to
an image format. Similarly the malware that accompanies a Word document will not
likely survive the conversion to a pdf format. While ImageMagick is an excellent tool for
this type of conversion it is not the only possibility. Documents could be displayed
through Google Docs to make the conversion from their current file type to HTML.

Management of the converted files requires the client code on the rendering
system to display multiple single page documents in the place of a single multipage
document.

Privacy, OPSEC, Industrial Espionage Security
 Government employees are continually trained to not give away indications of
their intentions. This emphasis is called Operations Security (OPSEC). OPSEC is
particularly important in mission planning but it applies to all areas of Government
service. For private industry industrial espionage is a big concern that mimics the
government’s concern for OPSEC. Unfortunately it is impossible to maintain complete
security when browsing or searching the internet. Search queries and page views quickly
tell a story about our intentions and research focus. Private advertisers currently
aggregate this data so that they can provide more focused advertizing – but is this their
only intended use for the data? What about the search providers? They can sort data by
person or agency and look for spikes in data that indicate breakthroughs or new
directives. It goes without saying that search providers and others could quickly discern
the current plans for almost any organization.

Identification of the individual who is accessing the page is easily done through
watching the IP address or placing a tracking cookie on the client machine. Even if the IP
address is masked through a proxy or the client does not accept non-persistent cookies
it is possible for the web site to still track the client through a process other parameters
that are unique to that particular client computer/browser setup. For example, web
pages can often fingerprint the client browser through evaluating multiple browser

Approved for Public Release; Distribution Unlimited.

22

settings such as the fonts installed, add-ons installed, the versions of these add-ons, etc.
The only way to stop this is at the browser, or in the case of Remote Web Rendering, by
substituting a remote browser.

 This is where Remote Web Rendering can provide additional privacy that is not
available during traditional browsing. When the page is remotely rendered all the
“fingerprint” parameters that the web site will see are parameters from the rendering
server, not from the client computer.

Since multiple users will be using RWR, and all instantiations of RWR are likely to
be on identical virtual machines, it will be impossible for the web site to determine who
the client is unless they have logged into the page or given some other type of indication
of who they are. The web site will get back information about the rendering server but
that information will be identical for every user of the rendering server. It will also be
impossible to discern what organization the client is from if the rendering server is
shared among multiple organizations.

The rendering server can also cache retrieved pages and search results so that
when multiple personnel request the same page within a set time frame there will only
be a need for one request to go out to the web site for that data. The implications of
this for OPSEC and industrial security are significant. Consider the situation when there
is a private announcement of new policy or a new product development within an
organization. It is highly likely that there will be an immediate spike in the searches done
for the keywords that will identify that product or policy. It will be a simple matter for
the search provider to identify those spikes and identify the new hot topic at the
organization. Caching of similar pages will reduce or eliminate those search keyword
spikes or spikes in page access to other telling locations, thus making client (or
organization) intentions much harder to discern.

Results

 Functionality: Research to this point has concentrated on proving that web
resources can be reliably transformed into innocuous forms without significant loss of
functionality in a timely manner. The technology has been tested by rendering over
5000 web pages and other internet resources so far. Most pages rendered acceptably
and still functions as the original. The ones that did not render acceptably were those
that had interactive content run by JavaScript functions. JavaScript functionality transfer
to the client was not part of this initial prototype but since a similar concept has
successfully been implemented in the WebShieldxi project it is safe to assume that it
would also work in our prototype. PDF documents were converted to a series of images
and an interface for interacting with that series of images was created I the client
interface.

Approved for Public Release; Distribution Unlimited.

23

Performance: Since the prototype system was not optimized there was no

attempt to qualitatively evaluate the performance impact of the complete re-writing of
the page. The general performance effects (positive and negative) of this process can be
categorized as follows:

- The rendering server will likely be on a much better internet connection than
the client’s internet connection thus the initial rendering of the page on the
server will be significantly quicker than it would be on the client machine.

- Actual code writing time on the rendering server is minimal.
- The code size will be much smaller than the code size of the original page.
- Access to the rendering server should be allowed to bypass other proxies and

therefore not incur the proxy delay.
- Screenshots from the re-rendered page will typically be much bigger in size

than the images in the original page and are the most significant item in the
slowing of the delivery of the new page.

- Phased delivery of screenshots enables much quicker access to the top
content on the page. It can also be setup to deliver screenshots in a puzzle
piece fashion so that no large image file is delivered at one time.

- Reverse AJAX technology needs to be optimized to minimize delays at both
client and server.

 Overall the Remote Web Rendering concept proved feasible and useful for many
potential applications. The prototype implementation, even in its rudimentary form has
proven to be useful in a real world setting.

Conclusions

 This report describes work done on the Remote Web Rendering system
prototype that completely re-writes incoming web resources before they reach the
browser. This rewriting effectively blocks all malware and provides a secure way to view
any web resource. The prototype demonstrated that this technology is feasible and
should be considered for further development by a qualified government or industry
team.

Remote Web Rendering presents a solution to a problem that few are trying to
solve. We all access the Web daily so we tend to overlook the danger that surrounds us.
The Web will host copious amounts of malware for many years to come since there is no
possibility of securing the hundreds of thousands of web sites that can pass on malicious
code to us. We must protect ourselves from the attacks that bypass our firewall and
come through our browser. While Remote Web Rendering is not envisioned at this time

Approved for Public Release; Distribution Unlimited.

24

to be the total solution to this problem, at least it can provide a significant reduction in
Web based client infections in applications where high security is required.

 Instances where RWR like approaches should be considered include high security
enclaves where browsing may expose critical computers to infection, field deployed
troops, and as an alternate proxy for allowing clients to access unknown resources. In
addition RWR will also enable encrypted browsing while accessing public WiFi and
privacy protections for increasing Operations Security (OPSEC) or industrial espionage
security.

Approved for Public Release; Distribution Unlimited.

25

Biography

Mr Born has over 25 years experience in conducting and managing research for
the Air Force. During that time he has worked in the Reliability, Maintainability, Artificial
Intelligence, Planning and Scheduling, Optical Networking and Cyber Defense. He holds
patents for prognostics techniques to non-intrusively detect cable chafing and
connector corrosion prior to mission impact and has submitted a patent application for
the Remote web Rendering technology. In addition, he designed and did much of the
coding on a program management web application that has assisted in the management
of approximately $4B in research contracts over an 11 year period. Mr Born’s current
work is in Web application security and browser security. This focus builds on several
years of Web development experience in both the public and private sector.

Approved for Public Release; Distribution Unlimited.

26

References
i Hacked Antivirus Site Delivers a Virus
http://www.pcworld.com/article/142318/hacked_antivirus_site_delivers_a_virus.html
ii Hacked Kaspersky Download Site Directs Users to Fake Antivirus
 http://www.eweek.com/c/a/Security/Kasperskys-Download-Site-Hacked-Directs-Users-to-Fake-
AntiVirus-336193/
iii McAfee’s Website Full of Security Holes, Researcher Says
http://www.networkworld.com/news/2011/032811-mcafee-security-holes.html
iv Hacker lays Claim to Breaches of Two Security Vendors Websites
http://www.darkreading.com/security/attacks-breaches/213401799/hacker-lays-claim-to-breaches-of-
two-security-vendors-websites.html
v Major Anti-Virus Sites Hacked! http://forum.intern0t.org/security-news-feeds/979-major-anti-virus-
sites-hacked.html
vi Sophos Corporation “Security Threat Report Update 07/2008”
http://sophos.com/sophos/docs/eng/papers/sophos-security-report-jul08-srna.pdf
vii Born, Frank, “Transformative Rendering of Internet Resources”, patent pending application serial
number 12/802,458, filed May 13, 2010
viii CFIBS Cross Fabric Internet Browsing System, http://www.spi.dod.mil/docs/CFIBS_DS_20100422.pdf
ix C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. Browsershield: Vulnerability-Driven Filtering
of Dynamic HTML. In Proc. of OSDI, 2006
x Zhichun Li, Tang Yi et al; WebShield: Enabling Various Web Defense Techniques without Client Side
Modifications, http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_2.pdf
xi Zhichun Li, Tang Yi et al; WebShield: Enabling Various Web Defense Techniques without Client Side
Modifications, http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_2.pdf
xiv Niels Provos et al “The Ghost In The Browser, Analysis Of Web-Based Malware”
http://www.usenix.org/events/hotbots07/tech/full_papers/provos/provos.pdf, May
2007.
xv Harris, Ray. JavaScript and DOM scripting, Mike Murach and Associates Inc, 2009.

	Introduction
	Related Work
	Benefits
	Malware removal
	Securing WiFi Connections
	Disrupt Machine Fingerprinting
	Break Steganographic Techniques
	Covert Channel Disruption
	Disrupting Exfiltration
	Reverse Malware Blocking

	Page Re-Writing Toolbox
	Use Cases
	Battle zone buffering
	Critical computer buffering
	Casual surfing
	Home user safeguard
	Cross Domain Browsing

	Challenges
	AJAX
	JavaScript
	Web 2.0 and beyond
	Internet plug-ins and Flash
	Selectable Content

	Design Details
	Document Object Model (DOM) as the Transformation Template
	Image Maps as a Page Platform
	Background Image Management
	Separating Top Level Pages from Sub Pages
	Server Security

	RWR Demonstration Vehicle
	Privacy, OPSEC, Industrial Espionage Security
	Results
	Conclusions
	Biography

